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.A NON-COMMUTATIVE QUASI SUBADDITIVE ERGODIC THEOREM .

by

Ryszard Jajte .

University of North Carolina at Chapel Hill

A-bstract: Let A be a von Neumann algebra with a faithful tracial

normal state p. Consider a sequence (x, ) of self-adjoint elementsn

in IL (A,q)) for which there exists a $-preserving *..automorphism of A and

(hn n lI suhta n+k < X n +cax k + ainh and inf n 14(x > *

n
Then n x convernes almost uniformly and in IL. This extends the

n
result of Derrienic.

Keywords: von Neumann algebra, (quasi) subadditive ergodic theorem,

trace, almost uniform convercience.
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0. Introduction. . "

This work is a contribution to the non-commutative pointwise

eroodic theory which has been developed recently in a series of

papers byAC. Lance [9], Y.G. SinaiaInd V. Anshelevich [13], F. Yeadon

[16), B. Kimmerer [8], M.S. Goldsteih [4], S. Watanabe [T5], D. Petz

[11], J.P. Conze and N. Dang Ngoc [l].>These authors extended to the

von Neumann algebra context the classical Birkhoff's type theorems.

Girr main goal is to prove a non-commutative version of a subadditive

ergodic theorem,which neneralizes our previous result [5] and contains

as the special cases the 'commutative' results of Kinqman [6,7] and

Derrienic [2]. The last author very recently proved the followina exten-

sion of Kingman's theorem.

Theorem 0. Let (9,F,p) be a probability space. Assume that T is "

a measurable measure preserving transformation of Q. Put Tf = foT for

f, ILl(Q ,F,p)• Let (fn be a sequence of inteqrable functions on P

satisfying the followinn conditions:

1) f n+k f n + Tnfk + Tnhk (n,k = 1,2,...), where (hk) is a

sequence of positive functions such that sup hkdp < co

2) inf k-1  fkdp > '•

k 

. •

Then n-f n converqes in Ill and almost everywhere.

We shall show that the result just formulated can be extended to

the von Neumann algebra context in the case of finite trace. Let us

begin with some notation and preliminaries. Let A be a von Neumann .-.

algebra (actino in a Hilbert space H) with a faithful normal tracial

state ¢. Let A denote the *-algebra of all operators in H affiliated

. .. ... .... . 7-. **. * *~ * ~ /* *_.
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with (A,4) in the sense of Seial [12]. In our case (of finite trace €)

the algebra A coincides with the algebra of operators measurable in the

sense of Nelson [10]. A sequence (xn) C A is said to be converqent

bilaterally almost uniformly to an element x e A if, for each F- > 0, there

is a projection p A A such that (xn-x)p E A for n large enough, 4(l-p) < F-

and IIP(xn-x)ol - 0 as n (camp [121, [13], [10]). The symbol 11 (A,4)

will stand for the Banach space of measurable operators which are intecrable

with respect to 0, with the norm i xlHl = O(lxl), where JxJ = (x*x)I/2 "

In the sequel we shall identify IL1 with the predual A of A [3]. The
I*

symbol Id" s) denotes the hermitian part of Il. For a self-adjoint ooerator

x affiliated with A and a Borel set Z on the real line, the symbol e z(x)

will denote the spectral projection of x corresponding to the set Z. In --

particular, x = Je(x) (spectral representation).
SdX

We adopt the following definition

Definition 1: A sequence (Xn; n = 1,2...) in ILj)(A.0) is said to

be quasi-subadditive if there is a 4b-preserving *-automorphism a of A . -

and a sequence (hk) of nonnegative elements of Lls)- with C = sup 4(hk) < 00
k

and such that [
(i) x < x + x + a hk for n,k = 1,2,...,

(ii) y = inf -> -
k k

I
Of course, a in (i) should be treated as the (unique) extension of the

automorphism a to ]LI .

Theorem I. Let (xn) be a quasi-subadditive sequence in ILI(A,4).

Then nIxn converges in IL and bilaterally almost uniformly to annb

tx-invariant element x of L l , and o(x) = y.

Before startinq the proof of Theorem 1 we shall formulate a few

lemmas. We shall follow the basic ideas of Kinaman [6] and Derrienic [21.

However, in our context, we cannot perform some operations, for example,

to pass to the lim inf
n
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or lim sup with the sequences of operators under considerations (as in l
n

[6) and [2] with sequences of real functions). To avoid such procedures

we start with the following lemma.

Lemma 1. Let, for n,m = 1,2,..., bn ,cn and a n() be the elements -0

of ILS)(A,¢) satisfying the inequalities cm > 0, and
M 

-" ""

(1) 0 < bm c + a ( for n > m.(I 0 n _ m n:.-

Assume that ¢(cm ) 0 as m -o and a (m) 0 bilaterally almost uniformly .
in n

as n for each = 1,2,... Then b 0 bilaterally almost uniformly. This

lemma is known [5]. For the sake of completeness we sketch the proof.

Proof. Let c > 0. Choose a subsequence (m ) of positive inteoers ,
S

m in such a way that 1(cs) < E2 with I E < C/2. Puttinq E =
s 5  m s=l Ms

A e[o,: (c m) we have 4(I-E) < c/2. Let (Pm) be a sequence of -

s

projections from A such that F(l-P m) < and I1Pman(m)PmI 1 0 as n - .

Put p = A P Then, for each m, Ilpa (m)piI - 0 as n o. In particular,
m=l .. . .

H1pan(im)plI < cm for n > Nm , Putting Q EAP, we have 4(1-Q) < c and

HJQbnQ1 < 11Qc 11 + IQ n(m)Q11 < 2Em, for n > max(ms,Ns), which means

that bm - 0 bilaterally almost uniformly. 0 0

Lemma 2. Let N and S be two bounded linear functionals on A. Assume

that N is normal (i.e. N E A*) and S is positive and singular in the

sense of Takesaki ([14], p. 127). Then N + S > 0 implies N > 0.

Proof. Let p be an arbitrary orthogonal projection from A. By

Takesaki's theorem ([14], p. 134, Th. 3.8), a positive linear functional

S on A is sinqular if and only if, for every non-zero projection q c A,

there exists a non-zero projection r E A such that r < q and S(r) - 0.

It follows that there is a sequence (Pk) of mutually orthogonal projections

- i,% l



4p
in A such that p and S~k . Indeed, it is enough to take in

k=l -

A a maximal family of mutually orthogonal non-zero projections (p).'

such that p < p and S(p )=0. Such family is at most countable (since
a n

* ~ is normal and faithful). Put pn = k(n=1, 2... ). Then by the
k= 1

normality of N, we have that N(p) = lim N(Q n lim [N(Q n) + S(Q)d] >0o.
n n n -

Since p is arbitrary, by the spectral theorem we obtain S(a) > 0 for all

* 0 < a rA, which ends the proof. El

Lemm~a 3. (camp. £2], [6]). Let (x ),(h )and at be as in Theorem 1.n n
Put

m k= 1

*Then there exists a sequence (zn), 0 < Zn E L 1(A,O) such that, for every

m > n, we have

(2) +~ak <Xz -
k=0 k= 1 a- k +z

*moreover, sup Ily n11,
n

*Proof. We have
in-1

my a I-c)(Y Xk + Xm
k 1

Consequently,
n-l M nn-i n-i l

i=0 k=i i=0

n ni-n-i -
k n n n-i n-i

7 x +Y (x _C% )+ ai(xc x
k 1 k=l i 0 ~ n-

By the quasi-subadditivity of (x ), we have thatn

n+k k - n hk

and

n-i n-ix-c x x c h
in m-n+l < n-I + a n-n+l'
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hence -n-I m-1 n n-1 ..
miZ Ym <.mxn + an(khk) + k - (n+l)x + X 'x

=0 Ym< n k k )n +  n-i]

i=O k=l k=l i=O

Putti nq n n-li "-

n Xk (n4l)xn n-i ' .
k I i- -0

we obtain (2). It remains to prove the boundness of y in ILl-norm.

This follows from the estimations

Xk - 1+ (k-i) - l k-l + ahk-l

and

Y< Xl +  (ml

<x1 +a('k=lk

then we can write

I IYVI I. f I1x1 + aL(I J=h -ml + I~x. + a(j 1 h..) J= h

1m 1-(x) +

l(~x j + ( hkl)) - m + l I + a( k-1l <

< j 11 1 ) + 2 suplhI - inf - = const <..
1kl) + I(( k (l m

Lemmia 4. Let (x ), (h ) and a be as in Theorem 1. Then there exist inn n

1 1(A, ) two elements x and w such that
n-i

*(3) ct x + a n(w) for n =1,2,...
i=O

'(xn)
Moreover, (() -y =inf

nn

Proof. We follow here the idea of Kingman [6] of using the weak

-cmactn es ofn) thenc y) dfine in em 2. den teify in..L . .

m

IL1 (A, ) with the predual A* of A and taking the natural injection of

A* into A* (A)**, we can treat the operators -. from IL as the

mS

Moreover,.........................................

I-(A € co pa 
t s o the 

pe u enc 
(y of dened 

tain 
temual id ntio 

no_

A, ito * = A,)*, e ca trat te oeraors m fom 1. 1 s te ).:Ali&'
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continuous linear functionals on A. The imaqes in A* IL*

of elements x,y,... of ILl we denote by x,y,... In particular,

'm(a) = (yma) for a c A. Moreover, we put (wo)(a) =ci(c 'a) for
Mm

(I A* and a E A. Then we have in particular a y a y for y IL. :.-,

Indeed, since 0 is a-invariant, we have for a A, that

. (cy)(a) = (a(y)a) = (a(y)a)) = (ya (a)) = a) = ay(a).

The sequences ( and hk) are bounded in ILl-norm, so the
mm .,..'

k= 1

sequences and m hk) are compact in A* in the weak*-topoloqy.

The formula (2) can be rewritten in the form L

n-i- . . . n
(4) cky + a hk) +Z

()1 < xn M n=I k-

- Taking the suitable limit points for (y ) and (I say O and.
m M k=l s

. ,respectively, we can write

n-i (.
(5) _< x + a() = 1,2,...),

where V c A* and 0 < 6 c A*.

In particular, we have for n = 1

(6) x v0 
+ a(6 > 0

By Takesaki's theorem ([14], p. 127) we can write

(7) x I v0 + a (6) =c* + ys ,

where a* and os are normal and singular part of x- V + a(s), respectively.

- Let S =5 + 6 be also the Takesaki's decomposition of6, i.e. A .
"

and s is a singular functional. Obviously, we have a s > 0 and s > 0.

Let us remark that ct(s ) is also a singular functional. Indeed, supposinq
5

:.:.. *..j"'*"*
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that there is a positive normal functional b < at(6 ),we would have
S

a b < 6 and, consequently, a- b = 0, so b = 0.-s

Summing up, the formula (7) gives us, for some z A*

(8) = z + CO( a)-.

with positive singular functionals asand 6 S* Thus, by formula (5),

we have
n-i-. n-i n-i l

(9) a 1(Z)~ a i(O )+ I c2( S) <x n+ n(, +n,
i=0 1=0 i=0 -Oa~

n-i
Since i+a (6 ) > 0, we obtain

i=0
n-i. n-il

(10) ' (Z) <x +L an )+ cn( ) + YcOI(o)

-n i=

or, equivalently,

(11) N+ S >0,
n-b..

where N =Xn + a (6*) a a(Z)
i=0

Th n-i
and S = (6 )+ )

s i=0

By Lemma 2, N > 0, i.e. we have

n-i
(12) a ct(z) < xn+ aJ(6~ (n =12..

Thp l~st formula can be easily translated into

n-i
(13) a 1(-) < x+ anw

for some x, w E 1L1(,)

To end the proof it remains to show that 0i(-) = ,or, what is equivalent,

that z(l) =y. In order to prove this we shall follow the general idea

of [2] and use the uniqueness of the Takesaki's decomposition of



f A* into its normal and singular parts.

Let us notice that formula (12) gives
x(l) O(x)

(14) zOl) < inf =inf . =y
n n
n n

Moreover,
m m~X

0 )(1) limr m 1  Y s(x k -a xk-1)(1) 1 urnm M y
s k=l s s

Thus, since z =v0+ as- ct(s ), we obtain

'y > z~l 0 V0(l 4 S6)(l0 + 6 SOl > y - 4t( S)() + 05(1)

Consequently, since o6 & (1) 6 s(1) < 6(1) 11611 <sup 1hj Il C'

k

we have y > z(l) > y-C.

Let s t k 2k for k =1,2,... The sequence (xP) is obviously

quasi-subadditive with respect t 2 (and with the same constant C

-upI~kIll). We can now repeat the same reasoning as for (xk). I
k

particular, we put

~r~ =~ ( 2k - t 2k-2)k= 1

* and obtain the formula analogue to (8)

* (15) z' - 26),

where is a weak* limit point of y , z' -the corresponding element

of A*, a and 6' the corresponding singular functionals in Takesaki's

* decompositions of suitable ax' and 6 '. Since n14O(x2n) -y, we obtain

* Let us notice now that
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(17) , 1 m 1  -

m X (X2k- ax2k-l) + c(X - (x2k'l - 2k-2))klk=1W

The sequences
':" 1 m

(18) - Y (X aand - (X
m 2k 2k-i m I (X2k-1 X2k-2

k=1 k-1
are bounded in L -norm (since x - X x + <h

r r-l I r-+ h1
compare the proof of Lemma 3). Taking the suitable weak*-limit points

I and v2 of these sequences, we obtain

1
(19) 0 :2(VI + v2 ) and \v)1 + av2 "

Denote by zi the normal parts of v. (i = 1,2). The uniqueness of Takesaki's

decomposition gives immediately

1 -(20) z = (zI + z2 ) and z' = z + z2
1 1 2

Consequently, we have z(l) = (z1(1) + z2 (l)) = ]-z.(1), . -
I..

and (16) gives

C(21) > z(1) > y -

The repetition of the procedure just described will give us

(22) y > z(I) > y - -- for n 1,2...
2
n

which means that . = z(l) and ends the proof of lemma 4. F

Proof of Theorem 1.

Let (xn) satisfy the conditions (i) and (ii) of Definition 1. By

lemma 4 there exist in A two elements x and w such that

n~w n-li-(23) un Xn +() - [Cx >0,with x)
i=O

It is easily seen that (un) is a nonnegative quasi-subadditive sequence

in IL1 satisfying the condition

.°o .... . . . .
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(24) inf i(uf Y 0.(x.,
nn n n

-1n-I
Moreover, by Yeadon's theorem [16), the averages n- ai converqe

j =Q

bilaterally almost uniformly and in I..1  so it is clear now that it

suffices to prove our theorem for the quasi-subadditive sequences (x)
n

which are nonnegative and satisfy the condition

(25) inf nx =0.
n n

x
n

nn
remains to show the bilateral almost uniform convergence of nto zero.

nI

To this end let us fix a positive integer in and, for n > m, write n mk + r

* with 0 < r < in-i. Then we have

O< Xn< x + mkx + ,m h < k- upX mk x ina k k- <inmx kn kr r- L 7C X rC h -~t +Q m
inr-1~ 0  i

where z k (Xk + hk)

By Yeadon's theorem, the averages

1 k-lim
((26) xm

i=0

converge bilaterally almost uniformly to some ain-invariant elemient

xm ,IL(A, ), such that t (x) 0 (xm)

* Puttini
1k-i . X~ -x 1m

(27) an(m)= .1 Ct z,
i =0

where k k(m) is defined by the equality n = ik + r (0 < r < mn-i), we qet

(28) 0 < xn < x + a (in) (n >m)
n n- in n

We shall reduce the proof of the theorem to Lemma 1. We shall show thatL



an (mn) -bilaterally almost uniformly as n - ,for every mn 1,2,....

* By Yeadon's theorem, the first term on the right hand side of (27) tends

* to zero so it remains to show that -k ain ' 0 almost uniformly as k .

* (for a fixed mn). Put a3 amc and let

zM =Xe(dX)
TO ~

*be the spectral representation of z Then JWe(dx))< since zE ILI(A.c0),

adRk(e(dx)) is the spectral measure of BkZ Moreover, d)

k
W (~ e(dX)) for all k. Thus, having taken 0 < X n -~0, we can write

Ilk 1CO~(
k~l 'Xw)~ (kXo in

(since z~ E L)

Let > >0, and choose (k )in such a way thatn

n

- z) < 2-n E

n n

unidsfor s n~ 1, fr...,2..

I k-
..............................

*k~ . . .



References

[1] J.P. Conze and N. Dang Nnoc, Erqodic theorems for non-commutative
* dynamical systems, Invent. Math. 46(1978), 1-15. P

[2] Y. Derriennic, Un theorem eroodique presque sous-additif., Ann. of
Probability 11 (3) (1983), 669-677.

[3] J. Dixmier, "Les alqebres d'operateurs dans lespace hilbertien
(alnebres de von Neumann)", Gauthier-Villars, Paris 1957.

f4] M.S. noldstein, Theorems on almost everywhere convergence in von
Neumann alnebras (in Russian), J. Operator theory 6(1981), 233-311.

[5] R. Jajte, A subadditive ergodic theorem in von Neumann algebras, Bull.

Acad. Pol. Sci. (to appear). k.._

[6] J.F.C. Kingman, Subadditive ergodic theory, Ann. Prob. 1(1973), 883-909.

[7] S Subadditive processes, Ecole d'Ete de Probabilitds
de Saint Flour V, 1975, Lecture Notes 539(1976), 176-223.

[8] B. Kummerer, A non-commutative individual ergodic theorem, Invent. Math.
46(1978), 139-145.

[9] E.C. Lance, Ernodic theorems for convex sets and operator algebras,
Invent. Math. 37(1976), 201-214. -

[101 E. Nelson, Notes on non-commutative integration, J. Fun Analysis
15(1974), 103-116.

[111 D. Petz, Erqodic theorems in von Neumann algebras, Acta Scient. Math.,
to appear.

[12] I.E. Senal, A non-commutative extension of abstract intearation, Ann.
Math. 57(1953), 401-457.

[13] Y.G. Sinai and V.V. Anshelevich, Some problems of non-commutative
erqodic theory, Russian Math. Surveys 31(1976), 157-174.

[14] M. Takesaki, "Theory of operator algebras I", Springer, Berlin-
Heidelberg-New York 1979.

[15] S. Watanabe, Ergodic theorems for dynamical semi-groups on operator
algebras, Hokkaido Math. Journ. 8(2)(1979), 176-190.

[16] F.J. Yeadon, Ergodic Theorems for sime-finite von Neumann alcebras I,
J. London Math. Soc. 2(16)(1977), 326-332,-Il, Math. Proc. Camb.
Philos. Soc. 88(1980), 135-147.

*Acknowledqements. This paper was written while the author held a
visiting posifion at the University of North Carolina at Chapel Hill,
whose hospitality he gratefully acknowledges.

Z•. . .
. . . . . . . . . . . . . . . . . . . . . . . . ... ." '.. ." "" " "''.". ." -"*" "-."-" ' '. • • '...'. . . . . ..'. ....". ...," "..''. " . Z



I

~

p.

I---

9

~0.~

.-. -. * .



I C-

S041~- ,4t

4,4F

It


